- curvature-free
- Математика: без кривизны
Универсальный англо-русский словарь. Академик.ру. 2011.
Универсальный англо-русский словарь. Академик.ру. 2011.
Curvature — In mathematics, curvature refers to any of a number of loosely related concepts in different areas of geometry. Intuitively, curvature is the amount by which a geometric object deviates from being flat, or straight in the case of a line, but this … Wikipedia
Free-space path loss — In telecommunication, free space path loss (FSPL) is the loss in signal strength of an electromagnetic wave that would result from a line of sight path through free space, with no obstacles nearby to cause reflection or diffraction. It does not… … Wikipedia
Ricci curvature — In differential geometry, the Ricci curvature tensor, named after Gregorio Ricci Curbastro, provides one way of measuring the degree to which the geometry determined by a given Riemannian metric might differ from that of ordinary Euclidean n… … Wikipedia
Sectional curvature — In Riemannian geometry, the sectional curvature is one of the ways to describe the curvature of Riemannian manifolds. The sectional curvature K(σp) depends on a two dimensional plane σp in the tangent space at p. It is the Gaussian curvature of… … Wikipedia
Systolic geometry — In mathematics, systolic geometry is the study of systolic invariants of manifolds and polyhedra, as initially conceived by Charles Loewner, and developed by Mikhail Gromov and others, in its arithmetic, ergodic, and topological manifestations.… … Wikipedia
cosmos — /koz meuhs, mohs/, n., pl. cosmos, cosmoses for 2, 4. 1. the world or universe regarded as an orderly, harmonious system. 2. a complete, orderly, harmonious system. 3. order; harmony. 4. any composite plant of the genus Cosmos, of tropical… … Universalium
nature, philosophy of — Introduction the discipline that investigates substantive issues regarding the actual features of nature as a reality. The discussion here is divided into two parts: the philosophy of physics and the philosophy of biology. In this… … Universalium
General relativity — For a generally accessible and less technical introduction to the topic, see Introduction to general relativity. General relativity Introduction Mathematical formulation Resources … Wikipedia
Introduction to general relativity — General relativity (GR) is a theory of gravitation that was developed by Albert Einstein between 1907 and 1915. According to general relativity, the observed gravitational attraction between masses results from the warping of space and time by… … Wikipedia
Differential geometry of surfaces — Carl Friedrich Gauss in 1828 In mathematics, the differential geometry of surfaces deals with smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspectives:… … Wikipedia
Maxwell's equations — For thermodynamic relations, see Maxwell relations. Electromagnetism … Wikipedia